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Cosmic balloons are spherical domain walls with relativistic particles trapped

inside. We derive the exact mass and radius relations for a static cosmic bal-

loon using Gauss-Codazzi equations. The cosmic balloon mass as a function

of its radius, M(R), is found to have a functional form similar to that of

fermion soliton stars, with a fixed point at 2GM(R)/R __ 0.486, which corre-

sponds to the limit of infinite central density. We derive a simple analytical

approximation for the mass density of a spherically symmetric relativistic gas

star. When applied to the computation of the mass and radius of a cosmic

balloon, the analytical approximation yields fairly good agreement with the

exact numerical solutions.
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1. Introduction

A particle with a discrete symmetry may have a different mass on either side of the

domain wall, which may form in an early Universe phase transition with the spontaneous

breaking of the discrete symmetry. When a particle has less energy than the rest mass

it would have on the other side of the wall, it can become trapped inside a region with a

closed domain wall as the boundary. Closed domain walls filled with such particles have

been named "cosmic balloons" [1]. Due to effects such as the emission of gravitational

radiation, irregular shapes of balloons oscillate and eventually settle down to spheres.

Here we are only concerned with a spherical cosmic balloon.

Cosmic balloons are stable objects. The pressure of the relativistic gas inside the

balloon balances the surface tension of the wall. An incarnation of a cosmic balloon is

a neutrino ball [2], which is a spherical domain wall with light right-handed neutrinos

trapped inside. Details of neutrino balls have been worked out which seem to indicate that

they are plausible astrophysical objects [2], possibly providing an alternative explaination

for the mass of quasars and other astrophysical phenomena.

In this work, we follow Ref[1] in the study of general properties of cosmic balloons,

in particular, the mass of the balloon as a function of its radius. The analytical ap-

proximation in Ref[1] has an extremely involved numerical form, and the mass versus

radius curve found there is numerically incomplete. In another previous work with sim-

ilar objectives, Ref[3], an analytical approximation was applied beyond its valid range

and led to incorrect numerical solutions of the mass and radius. In this work, we find

simple and transparent analytical expressions which are useful in helping us understand

the cosmic balloon solutions qualitatively, and we compute the complete set of mass and

radius numerically with and without the application of the analytical approximation.



2. Mass and radius relations

To find the radius R and mass M of a cosmic balloon, we study the static configuration

of a spherical domain wall containing gas. Let the metric inside the domain wall (r < R)

be

dr 2 = B(r)dt 2 - A(r) dr 2 - r2(dO 2 + sin 2 0d¢2). (2.1)

The motion of spherical domain walls containing vacuum has been solved in Ref.(4),

using the Gauss-Codazzi formalism. Following Ref.(4), we find the equations of motion

for a spherical domain wall containing a perfect fluid with pressure p and density p:

(_+_)/i+ R---z--+_ 7R2+_-_ 2 = -_ R - -- - _A(p +p)

aGM Z Tt2 + - -4aZ_rGa, (2.2)(_ - Z)ii + R2 2 __ _2

Here a dot denotes a derivative with respect to proper time, and a prime denotes a

derivative with respect to r - R. We have defined

OL ---'-- [A-I(/I_)-_- R2] 1/2 '

/3--[1 2a_/I + T1211/2 (2.3)

M is the total mass of a cosmic balloon of radius R.

The equation for hydrostatic equilibrium is [5]

B' 2p'

B p+p" (2.4)

This and the Einstein equations can be combined to give a single differential equation:

.(r)j _ j
where we have defined .h,4(r) such that

M'(r) - 477r2p(r), M(0)=0. (2.6)



For A(0) finite,

A(r)-[1 2G_(r).] -1 (2.7)

Using the above well known results in Eqs.(2.2) and setting/_ = 0 =/_, we find

M(R) = M(R) + 2_rR2a(a + _), (2.8)

p(n) = _ 3_ + , (2.9)

with

O_ --

Eq.(2.8) can be rewritten to give

= a - 4_rRGa, for R<_
4_rGa " (2.11)

A cosmic balloon with R > a/(4_rGa) is contained within its Schwarzschild radius, a

case in which we are not interested here. Hence

M(R) = .M(R) + 4_rR2a[a - 2_rRGa]. (2.12)

Note that .M(R) is the total energy of the matter and the gravitational field inside the

cosmic balloon [5]. Eq.(2.9) gives the radius R of a cosmic balloon as a function of its

surface tension a, it can be rewritten as

2ca Ga.M(R) a

;(n) = _ + ZR2 + -A2_G°2" (2.1_)

We see that the gas pressure at R is balanced by the surface tension of the domain wall,

the gravitational force on the wall due to the total mass inside the wall and the wall

itself.



3. An exact solution

Let us define dimensionless variables as follows:

x(r) = 2GA4(r)

r

r

r0

p(r)

Po

(ro _ [4S_Go']-l) ,

(Mo=
M(R)

Mo ' (3.1)

Note that the length scale r0 and the mass scale 3//o can be written as

[ -'r0 -_ 1.95 x 1013cm a
(TeV)3 '

34o --_ 6.6 x 107M e (TeV) s . (3.2)

This is interesting since both R and M(R) have maxima on the order of 1, as we shall

see. a 1/a is usually associated with the scale of the discrete symmetry breaking, but it

could be made anything depending on the particular model of cosmic balloon.

Eq.(2.5) can be rewritten as

x"= _2 _ [x,2 + 5x' f_(_) + (7x 3)f2(_)] (3.3)31-x

where the primes denote differentiation with respect to F, and

X

/1(_) - _, /1(0) = 0,

x 8_rGp(O)rg
A(_) - _, A(0) -- q = 3

x(o)=o=x'(_=o), if p(0) is finite. (3.4)

Note that p(0) dependence only comes in through the boundary condition of the function

f2(_). In terms of x and _,

1 [z+ _x']p*(r)= _-_ . (3.5)



The scaled radius of the cosmic balloon R is given by the intersection of p*(r) and

p*(n) = _ 34 +

The scaled mass of the cosmic balloon is

Here

(3.6)

(3.7)

= [1- x(R)]1/2, = o,- R/12,
n

for R < 12a. (3.8)

Eq.(3.3) has an obvious solution [5]

3 3 3
x = _, p(r) = or p*(r)-56_.Gr 2 - _r_ ,

which has infinite central mass density. The corresponding cosmic balloon radius and

mass are:

_=_

M(R) = 8(122- 25v/_)
63v_ - 0.2275,

2GM(R) M(R) = 2(20- v/'_)
R - R 63 -_ 0.486. (3.9)

4. Numerical solutions

The numerical solutions of the cosmic balloon mass function can be obtained in a straight-

forward way. It is most convenient to use the parameter q to track the solutions of

Eq.(3.3). Note that

8rap(O)r_)

q ---- cx p(O), p*(O) = 3q. (4.1)3

For a'given value of q, Eq.(3.3) can be integrated to find x(r) and hence p*(r), p*(r) and

p*(R) = (34 + fl-1)/4R have two intersections for q > qc, which give two values of the

5



cosmicballoon radius R, corresponding to two different branches of the cosmic balloon

mass/radius solutions (see Fig. 1). The two branches of solutions meet at q = qc -_ 1,

for q < qc (or p(0) < pc(0)) there are no solutions and cosmic balloons do not exist, q_

corresponds to the minimum of the central mass density for a cosmic balloon.

Fig.2 and Fig.3 are the radius R and mass M(R) versus q respectively. For increasing

q (i.e., p(0)), the first branch of solutions gives decreasing R and M(R); the second branch

of solutions gives R and M(R) with complex and similar behavior. In the second branch

of solutions, R increases until it reaches the maximum (Rm "_ 0.732), then it decreases

until it reaches the minimum, it then increases again until it reaches a second (smaller)

maximum, then it decreases again to a second (larger) minimum, and continues in this

manner. From Fig. 2, it is clear that R oscillates with damping amplitude around

R -_ 0.468 for large q. M(R) has the same behavior but with a phase lag in q[p(0)]

compared to R (M,_ __ 0.374, RMm --_ 0.71), and it oscillates around M(R) "-" 0.2275

for large q (see Fig. 3). This is not surprising, since R __ 0.468 and M(R) _ 0.2275

correspond to the exact solution of p(r) in the limit of p(0) _ oo (i.e., q _ oo). In the

plot of M(R) versus R (Fig. 4), we see that the mass function spirals in toward the fixed

point (R _ 0.468, M(R) -_ 0.2275), which satisfies 2GM(R)/R ,._ 0.486.

The maximum mass and the corresponding radius for a cosmic balloon are

(TeV) -'M,_a_ = M'---_M0 _ 2.47 x 10ZM® a 3 ,

RMma_ -- RMrn ro "_ 1.38 x 1013cm 3 , (4.2)

Since 2GM(R)/R = M(_)/_, the fractional red shift z of a spectral line emitted from

the surface of a cosmic balloon [5]

z--_ A (1 2_M)-1/2- 1- (4.3)

is independent of the actual physical scales r0 and M0, i.e., independent of a (the sur-

face tension of the domain wall). The exact numerical solution shows that 2GM/R
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reachesmaximum ((2GM/R)ma_ _- 0.56) after the mass has already reachedmaxi-

mum. Before M = Minas, 2GM/R increases with increasing M. The maximum of

mass then corresponds to the maximum of the fractional red shift z for a stable cosmic

balloon, zm_ _ 0.46 (2GMm/RMm __ 0.53). At the minimum of the central mass density

(Re --_ 0.56, Mc --_ 0.17, 2GMc/Rc ,,_ 0.30), z_ __ 0.20.

5. Analytical approximations

To obtain useful analytical approximations, we scale Eq.(3.3) such that its solutions are

independent of the central mass density p(0) (i.e., independent of q). Define

Eq.(3.3) becomes

2 1 [_2+ 5_I;(t) + (Tz- 3)f_(t)],:_ - 31 -x

where the dots denote differentiation with respect to t, and

X

f_'(t)- t' iT(o) = o,

x *0 1f_(t) =_t2' f_( ) = 5'

x(t=O)=O=_(t--O).

(5.1)

(5.2)

Note that Eq.(5.1) is exactly the same in form as Eq.(3.3), but without p(O) dependence

in the boundary conditions. Correspondingly,

(5.3)
p*(r) p(r) 1 [x+ t_].-p(t)-- p'(O) - p(o) - t2

(5.4)

Combining Eqs.(5.3) and (5.1), we can express x(t) in terms of _(t):

x = [(U_) + _U_]t
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The radius of the cosmicballoon is now given by

-fi(tR)-- 4v_t R 3a(tu) +

where tR -- v/_-R, and

(5.5)

a(tR) = [1-- x(tR)]1/_,

_(tR) =_(t_) tR
12v'_" (5.6)

Civen the function _(t), we can find n(q). The mass of a cosmicballoon is (see Eq.(3.7))

_(R) = _ [x(tR)+ -_ (5.7)

Recall that M(R) and R are defined in Eq.(3.1).

The analytical solution from Ref[3]

Pl(t) - cosh2(kt), k = (5.8)

is an extremely good approximation for t _ 1. The corresponding x(t) is

xl(t) = (kt) tanh(kt) - t2/[3eosh2(kt)]
(kt) tanh(kt)+ 1 (5.9)

Eq.(5.1) still has the exact solution x = 3/7, which has the wrong boundary conditions

at t - 0. However, the solution with the correct boundary conditions at t - 0 should

approach x = 3/7 in the limit of large t, as indicated by our exact numerical solutions.

To the second order of a small parameter A, the perturbation around x = 3/7 gives

3 A

x2(t) = ff + _ cos[t_(t)] +

A 2 139 cos[2tg(t)] - 19 v/_ sin[20(t)]} (5.10)_t_{-7+_ _.-- ,

-- _ q- tan-1 (5.11)B"

where
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A and B are constants which are independent of p(0). A good fit of Eq.(5.10) with the

exact numerical solution gives

A _ -0.18, B __ 3.54.
(5.19.)

Eq.(5.3) gives the corresponding _(t) for x2(t):

A (cosI ( )l sioI   )l) 2(t) = -

7 A 2 (7 86cos[2t_(t) ] - _-_V_sin[20(t)])]. (5.13)4- 32 t3/2 2 9

Since Eq.(5.8) is valid for small t, while Eq.(5.13) is valid for large t, we can construct an

approximate solution by combining the two solutions with appropriate weight functions,

i.e.

-fi(t) = Wl(t)-fil(t ) + w2(t)-fi2(t),

where wl(t) and w2(t) are weight functions. For example

(5.14)

1 tn2

Wl(t) -- 1 "4- e tin' t n_' W2(t) - e_t/n, 4- t n_" (5.15)

A good choice is

n_ = 20, n2 = 8. (5.16)

The cosmic balloon radius as a function of the central mass density p(0) can be

computed by using Eqs.(5.14) and (5.5). We can write

x(t) "- W 1 (t) X 1 (t) 4- w2(t ) x2(t)" (5.17)

The mass of the cosmic balloon is given by Eq.(5.7).

In Fig.l, we see that Eq.(5.14) is an extremely good approximation of the exact mass

density _(t) (scaled to be independent of p(0)). The radius R and mass M(R) obtained

by using Eqs.(5.14) and (5.17) are plotted in dashed lines in Figs. 2-4, they are quite

close to the exact solutions.



6. Remarks

The spiral behaviour in M(R) versus R of cosmic balloons (see Fig.4) resembles that of

fermion stars [6]. This is not surprising since cosmic balloons and soliton stars are similar

objects, dM/dp(O) -- 0 generally signifies the change from stability to instability (or vice

versa), and dM/dp(O) > 0 indicates stability. However, due to dynamical complications,

the range of M(R) and R beyond the first mass maximum (dM/dp(O) - 0) on the curve

in Fig. 4 does not correspond to stable configurations of cosmic balloons, although the

conditions for stability are satisfied each time the curve bends upward (for increasing

p(0)). It is possible that the existence of the fixed point (R __ 0.468, M(R) __ 0.2275,

2GM(R)/R __ 0.486) indicates that the cosmic balloons beyond the stability range os-

cillate around a finite configuration with 2GM(R)/R __ 0.486, instead of collapsing into

black holes.
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Figure Captions

Fig. 1. _(t) and -fi(tR) = [3a(tR) + _-'(tR)]/ (4V/'_tR) , with t -- V_ and q _---

87rGp(O)r_/3 = 0.9, 2, 10 (dotted lines from right to left). The dashed line is the analytica !

approximation of _(t) from Eq.(5.14), it almost overlaps with the exact solution (the solid

line).

Fig. 2. R versus q =_ 8_rGp(O)r_/3. The solid line is the exact solution, while the

dashed line is the result of analytical approximation. The dotted line is R = 0.468.

Fig. 3. M(R) versus q -- 8_cGp(O)r2/3. The solid line is the exact solution, while the

dashed line is the result of analytical approximation. The dotted line is M(R) = 0.2275.

Fig. 4. M(R) versus R. The solid line is the exact solution, while the dashed line is

the result of analytical approximation.
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